N-Acetylglucosamine Inhibits LuxR, LasR and CviR Based Quorum Sensing Regulated Gene Expression Levels

نویسندگان

  • Önder Kimyon
  • Zehra İ. Ulutürk
  • Shashidhar Nizalapur
  • Matthew Lee
  • Samuel K. Kutty
  • Sabrina Beckmann
  • Naresh Kumar
  • Mike Manefield
چکیده

N-acetyl glucosamine, the monomer of chitin, is an abundant source of carbon and nitrogen in nature as it is the main component and breakdown product of many structural polymers. Some bacteria use N-acyl-L-homoserine lactone (AHL) mediated quorum sensing (QS) to regulate chitinase production in order to catalyze the cleavage of chitin polymers into water soluble N-acetyl-D-glucosamine (NAG) monomers. In this study, the impact of NAG on QS activities of LuxR, LasR, and CviR regulated gene expression was investigated by examining the effect of NAG on QS regulated green fluorescent protein (GFP), violacein and extracellular chitinase expression. It was discovered that NAG inhibits AHL dependent gene transcription in AHL reporter strains within the range of 50-80% reduction at low millimolar concentrations (0.25-5 mM). Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. Further, this study shows that NAG down-regulates CviR induced violacein production while simultaneously up-regulating CviR dependent extracellular enzymes, suggesting that an unknown NAG dependent regulatory component influences phenotype expression. The quorum sensing inhibiting activity of NAG also adds to the list of compounds with known quorum sensing inhibiting activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria.

The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-L-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or C...

متن کامل

The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity.

Quorum sensing is a process by which bacteria release and subsequently respond to signal molecules, as a mechanism for sensing population density (4). Acylated homoserine lactones (AHLs) are well-studied quorum-sensing signals among proteobacteria and are most commonly synthesized by enzymes of the LuxI family (3). AHLs are usually recognized by members of the LuxR family of transcription facto...

متن کامل

An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR

Many Proteobacteria govern responses to changes in cell density by using acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling. Similar to the LuxI-LuxR system described in Vibrio fischeri, a minimal AHL QS circuit comprises a pair of genes, a luxI-type synthase gene encoding an enzyme that synthesizes an AHL and a luxR-type AHL-responsive transcription regulator gene. In most bacteria th...

متن کامل

QsIA disrupts LasR dimerization in antiactivation of bacterial quorum sensing.

The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors by using quorum sensing (QS), a signaling cascade triggered by the QS signal molecule and its receptor, a member of the LuxR family of QS transcriptional factors (LasR). The QS threshold and response in P. aeruginosa is defined by a QS LasR-specific antiactivator (QslA), which binds to LasR and prevents it...

متن کامل

A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity

An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016